O.P.Code: 20EC0415

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Regular & Supplementary Examinations February-2024 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

ELECTROMAGNETIC THEORY AND TRANSMISSION LINES				
(Electronics & Communications Engineering)				
			rks:	60
	(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-1			1
1	a Define Coulomb's law and derive the force F that exists between two unlike charges.	CO1	L1	6M
	b Two-point charges, QA = +8 μ C and QB = -5 μ C, are separated by a distance r = 10 cm. What is the magnitude of the electric force between them?	CO2	L3	6M
	OR			
2	a Define Electric Potential. Find the electric potential for a point charge is located at origin and Write Maxwell's second equation for electrostatic field.	CO2	L3	6M
	b Determine the Relationship between E and V. UNIT-II	CO2	L3	6M
3		CO1	L2	6M
	b Determine the Magnetic Field Density due to Infinite line Current by applying Ampere's Circuit law.	CO3	L3	6M
	OR			
4	0	CO ₁	L2	6M
	b List differential and integral form of Maxwell's equation for static EM filed. UNIT-III	CO2	L1	6M
5	a Determine the Expressions for inconsistency of Ampere's law.	CO3	L3	6M
	b Why ampere's Law is In-consistent for timevarying fields.	CO ₂	L3 L4	6M
	OR	CO2	LT	UIVI
6	a Prove that one of the Maxwell's equations is $\nabla \times H = J + Jd$	CO4	L5	6M
	 b An antenna radiates in free space and E= 80 cos(500t-8z)ax V/m. Calculate φ and β. 	CO2	L3	6M
	UNIT-IV			
7	a Derive the characteristics of plane wave in free space.	CO5	L3	6M
	b Derive the expression for intrinsic impendence and propagation constant in	CO5	L3	6M
	a good conductor.			
	OR			
8	Derive the expressions for reflection coefficient and transmission coefficient for reflection of plane wave at oblique in perpendicular polarization. UNIT-V	CO5	L3	12M
9	 a Define Transmission line and Discuss about Transmission line Parameters b With neat sketch explain about Primary and Secondary constants of transmission line. 	CO6	L2 L3	6M 6M
	OR			
10	A lossless transmission line with $Z0=50 \Omega$ is 30m long and operates at 3MHz. The line is terminated with a load $ZL=70 + j50\Omega$, If u=0.6c on the line. Compute reflection coefficient, standing wave ratio and Input impedance, load impedance, (i) without using smith chart (ii) Using smith chart	CO6	L3	12M

***•END ***

and the second of the second o